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ABSTRACT
We propose a genetic fuzzy discretization method for contin-
uous numerical attributes. Traditional discretization meth-
ods categorize the continuous attributes into a number of
bins. Because they are made on crisp discretization, there
exists considerable information loss. Fuzzy discretization
allows overlapping intervals and reflects linguistic classifi-
cation. However, the number of intervals, the boundaries
of intervals, and the degrees of overlapping are intractable
to get optimized. We use a genetic algorithm to optimize
these parameters. Experimental results showed considerable
improvement on the classification accuracy over a crisp dis-
cretization and a typical fuzzy discretization.

Categories and Subject Descriptors
I.5 [Pattern Classification]: Models—Fuzzy set

General Terms
Experimentation, Performance

Keywords
Genetic Algorithm, Fuzzy Discretization, Classification Prob-
lem

1. INTRODUCTION
For knowledge discovery from a raw data set, one first pre-

processes the data to remove noise and handle missing data
fields. Then data transformation, such as the reduction of
the number of variables and the discretization of attributes
defined on a continuous domain, is often performed. The
transformed data are provided to a data mining algorithm
[1].
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One of the important and complex issues in data mining is
related to the transformation process. Kusiak [15] empha-
sized that the quality of knowledge discovery from a data
set can be enhanced by transformation such as discretiza-
tion because many of knowledge discovery techniques are
very sensitive to the size of data in terms of complexity.
In addition numerical value ranges are not easy enough for
evaluation functions to handle in a nominal domain; for ex-
ample, the original versions of the popular machine learning
algorithms ID3 and AQ could be used only for categorical
and symbolic data, and Quinlan [19] had to transform con-
tinuous ones into discrete values in his C4.5 decision tree
learner. Many real-world classification algorithms are hard
to solve unless the continuous attributes are discretized. It
is hard to determine the intervals for a discretization of nu-
merical attributes that has an infinite number of candidates.
It remains a notorious problem in numerical attribute han-
dling [8].
In the Top-Down Induction of Decision Trees family, the

algorithms for discretization are based mostly on binariza-
tion within a subset of training data [3]. A simple discretiza-
tion procedure divides the range of a continuous variable into
equal-width intervals or equal-frequency intervals. A variant
of the method uses Shannon’s entropy theory so that the en-
tropy scheme determines the interval boundary points [20].
Both Ching et all. [5] and Fayyad et al. [9] suggested class
dependent algorithms. Those algorithms reduce the number
of attributed values maintaining the relationship between
the class and attribute values.
Liu et al. [16] classified discretization methods from five

different viewpoints: supervised vs. unsupervised, static vs.
dynamic, global vs. local, top-down vs. bottom-up, and direct
vs. incremental. Unsupervised methods do not make use of
class information in the discretization process while super-
vised methods utilize it. If no class information is available,
unsupervised discretization is the only method possible. Dy-
namic methods perform discretization of continuous values
during classification process, such as in C4.5 while static
methods preprocess discretization before classification pro-
cess. Local methods use the a local region of the instance
space while global methods use the entire space. Top-down
methods start with one interval and split intervals in the pro-
cess of discretization. Bottom-up methods split completely
all the continuous values of the attribute and merge intervals
in the process of discretization. Direct methods divide the
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range into k intervals simultaneously, thus the number of in-
tervals is provided. While incremental methods begin with
a simple discretization and pass through an improvement
process, needing an additional criteria which determines to
stop discretizing.
Traditional interval discretization methods are based on

a crisp set; a value in a continuous attribute must belong
to only one interval. They are often not appropriate for de-
scribing a value located around the boundaries of intervals.
Fuzzy logic is an attractive method for the representation
of human knowledge in classification problems. A consider-
able number of studies have been conducted on the effects
of fuzzy discretization on classification problems. Ishibuchi
et al. [11, 13] examined the effect of fuzzy partitions on the
performance of fuzzy rule-based systems and also discretized
the domain of each attribute based on inhomogeneous fuzzy
partitions in order to determine the optimal intervals.
An important decision in fuzzy partitioning is about de-

termining the number of intervals, the positions of interval
boundaries, and the degrees of overlapping in the fuzzy sets.
Ishibuchi et al. [12] showed how fuzzy discretization can be
derived from conventional interval discretization. Murata
[17] adjusted fuzzy partitions by a genetic algorithm and
Chen [4] proposed the concepts of interval-valued fuzzy hy-
pergraph in order to generate fuzzy partitions.
In this paper, we optimize the parameters that specify

fuzzy partitioning by genetic algorithms. We evolve the
number of intervals, the boundaries, and the degrees of over-
lapping for fuzzy sets. For efficiency, we mix genes of discrete
values and continuous values. We compare the classifica-
tion accuracies of the suggested genetic fuzzy discretization
methods with other discretization methods. For evaluation,
we use artificial neural network and C4.5 as machine learn-
ing algorithms.
This paper is organized as follows. In Section 2, we briefly

describe simple discretization methods and fuzzy discretiza-
tion. Then we describe the main idea in Section 3. Section 4
explains datasets which are used in experiments and the ex-
perimental results. In Section 5, we make conclusions.

2. FRAMEWORK FOR FLEXIBLE
DISCRETIZATION

2.1 Simple Discretization Methods
The representative discretization methods are equal-width

discretization and equal-frequency discretization [6]. In the
equal-width discretization, the whole range is divided into k
intervals of equal width between vmin and vmax. The length
w of each interval is (vmax − vmin)/k. The bounds of the
ith interval are defined as

v[i]min = vmin + w ∗ i
v[i]max = vmin + w ∗ (i+ 1)

where i = 0, . . . , k − 1.
The membership function of a continuous attribute is de-

fined as follows:

Si(x) =


1, if v[i]min ≤ x < v[i]max,
0, otherwise.

In the equal-frequency discretization, it sorts the values
of the attribute and divides them into k groups that each
includes the same number of samples. Let N be the number

I
i−1 i

I i+1
I

a b c d
i i i i

Figure 1: Trapezoidal membership function of a
fuzzy set.

of observed values of an attribute. The size of each interval
is defined as w = N/k .The bounds of each interval are
defined as follows:

v[i]min = (i ∗ w)th value

v[i]max = ((i+ 1) ∗ w)th value

where i = 0, . . . , k−1. The membership function is defined
as follows:

Si(x) =

8<
:

1, if v[i]min ≤ r[x] < v[i]max, i = 0, 1, ..., k − 2
1, if v[i]min ≤ r[x] ≤ v[i]max, i = k − 1
0, otherwise.

where r[x] is the rank of value x in the sorted list.

2.2 Fuzzy Discretization
A value in interval discretization methods must belong to

only one interval without considering whether it has rele-
vance to other adjacent intervals. For example, assume that
the domain of our ages is divided into two intervals by the
threshold age 25. Consider four ages, 11, 24, 26, and 39.
Although 24 is more relevant to 26 than to 11, 11 and 24
belong to the same interval whereas 24 and 26 belong to dif-
ferent intervals. The relative difference of the values is not
very well reflected. In this case, the simple discretization
causes notable information loss.
A fuzzy set which does not require mutually exclusive in-

tervals is adequate to resolve this problem. In some cases,
more than one interval is associated with a value when it
is located around a boundary between adjacent intervals.
Fig. 1 shows a classical fuzzy interval Ii and its four param-
eters ai, bi, ci, and di.

2.3 Fuzzy Discretization with GA
We divide the range of a continuous attribute into k inter-

vals and represent each value by a k-bit string where each bit
corresponds to one interval. The ith bit of the binary string
represents whether the value belongs to the ith interval or
not. While a value belongs to only one interval in a simple
discretization, it can belong to more than one interval in
fuzzy discretization. Thus a value can be represented by a
binary mask. Fig. 2 shows an example. The value 0.523 be-
longs to the second and third intervals and is represented by
a binary mask 0110. It provides more flexibility in machine
learning algorithms for pattern classification. We optimize
the boundaries of intervals and the degrees of overlapping
in fuzzy discretization. We use four parameters for each in-
terval Ii: ti, ti+1, li and ui. The genetic fuzzy membership
function is defined as follows:
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0  1  1  0 Discretized value   

0.0 0.15 0.25 0.45 0.55 0.71 0.85 1.0

0.523

Figure 2: An example discretization and binary
mask for a value with 4 intervals
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Figure 3: Parameters determining the boundaries
of intervals and the degree of overlapping

G0(a) =


1, if vmin ≤ a < u0,
0, otherwise.

Gi(a) =


1, if li ≤ a < ui, i = 1, . . . , k − 2,
0, otherwise.

Gk−1(a) =


1, if lk−1 ≤ a ≤ vmax,
0, otherwise.

where li ≤ ti, i = 1, . . . , k − 1, and ti+1 ≤ ui, i =
0, . . . , k − 2. In the above, ti and ti+1 indicate the “pivot”
points of interval i. li and ui indicates the extended left and
right boundaries of the interval i, respectively. ti, li and
ui are determined by genetic optimization (Fig. 3). Fig. 4
shows an example of discretization results. In the fuzzy
discretization 1, the value 0.523 belongs to the second and
third intervals and is represented by a mask 0110. In the
fuzzy discretization 2, it belongs to only the third interval
and is represented by 0010. The value 0.69 is represented by
0010 and 0011, respectively, in the two fuzzy discretization
schemes. For each input of a neural network, we have four
input nodes that accept four binary digits.

3. THE GA FOR GENETIC FUZZY
DISCRETIZATION

3.1 Encoding
Fig. 6 shows an example chromosome. In the figure, we

assume that the maximum number of intervals is 10 and
the minimum is 3. The first nine genes indicate the validity
of the boundaries of intervals, the next nine genes indicate
the boundaries of the intervals, and the other eighteen genes

Create initial population;
Evaluate all chromosomes ;
do
{

Choose parent1 and parent2 from population ;
offspring = crossover (parent1, parent2) ;
mutation(offspring) ;
evaluation (offspring) ;
replace(parent1, parent2, offspring);

} until (stopping condition) ;
return the best solution;

Figure 7: Genetic algorithm framework.

indicate the overlap degrees with adjacent intervals. In the
case of maximum k-interval optimization, a chromosome has
4(k − 1) genes. Among them, the first k − 1 genes, validity
genes, determine the validity of the boundaries. The next
k−1 genes, pivot genes, correspond to the boundaries of the
intervals and the other 2(k−1) genes, overlap genes, specify
the degrees of overlapping on each adjacent intervals.
The validity genes activate or deactivate the pivot genes

that determine the boundary points of intervals. When all
validity genes have the value 1, the number of intervals is
10. When the kth validity gene changes from 1 to 0, the
kth pivot gene is deactivated. It means merging Ik and Ik+1

intervals. To the contrary, if the kth validity gene changes
from 0 to 1, the kth pivot gene is activated and the kth pivot
point becomes a split point (Fig. 5).
Considering the volume of search space, we restrict the

values of base genes to be discrete while allowing those of
overlap genes to be real. We mix genes with discrete num-
bers and those with continuous numbers in a chromosome.
The initial values of overlap genes are continuous numbers
that are randomly chosen between 0.0 and 0.4. k was set to
10. The values of pivot genes (t1, . . . , tk−1) are chosen from
{0.10, 0.11, 0.12, 0.13, · · · , 0.97, 0.98, 0.99}, and the gap be-
tween two adjacent valid boundaries is between 0.1 and 0.4.
The value of an overlap gene indicates the distance between
a boundary point and a pivot point. If the left overlap gene
value for interval i’s left boundary is 0.13, the pivot gene
value of interval i is 0.5, and the width of interval i is 0.35,
then the extended left boundary becomes 0.5 − 0.35 * 0.13
= 0.4545. The values of overlap genes should be in the range
[0, 1).

3.2 Initialization
Initial solutions are generated at random. In each chro-

mosome, the first nine genes are binary values, 0 or 1, which
indicates the validity of corresponding pivot genes. The next
nine genes are discrete values as mentioned above and the
other eighteen genes are real values as mentioned above. We
set the population size to 500.

3.3 Parent Selection
The fitness of a chromosome is determined by the accuracy

of a machine learning algorithm on a predefined subset. We
use the binary tournament selection [10].
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0.523 0.69

0.0 0.15 0.40

Interval 2 Interval 4

Interval 1 Interval 2 Interval 4

0.523 0.69

1.00.750.50.250.0

0.25 0.50 0.750.0

Interval 3Interval 2 Interval 4

1.0

Fuzzy discretization 1

Interval discretization

Value

Fuzzy discretization 1

Fuzzy discretization 2

Interval discretization

0.69

0 0 1 0

0 0 1 10 0 1 0

0 1 1 0

0 0 1 0

0.523

0 0 1 0 Even widths (interval width = 0.25)

0.523 0.69

Fuzzy discretization 2

0.75 1.0

Interval 3

Interval 1

Interval 3

Figure 4: Three different example discretizations and the corresponding binary masks

Merge intervals

1 0 0 1 0 1 0 0

Split interval

1 0 0 1 0 1 0 0

01

1

1 1 1 1

0 0 0 0 01 1

0 010

0 1

Figure 5: Merge and split intervals by validity genes

3.4 Crossover and Mutation
We use the uniform crossover [21]. Mutation operator as-

signs a random value to each overlap gene within its admit-
ted range with a probability 0.3. We allow more conservative
mutation to the base genes and each base gene is changed
at random within a valid range with a probability 0.1.

3.5 Fitness Evaluation
Each solution is evaluated by ANN. To provide inputs for

the ANN, each attribute value is transformed to k binary
values that each represents a bit of the binary mask for the
fuzzy membership where k is the number of intervals. The
neural networks are trained by a set of training data. For
example, if there are 21 attributes and 3 classes in a data
mining problem as in Section 4, each neural network has
84 input nodes and 3 output nodes when the number of
intervals is 4. The number of hidden nodes is determined to
be �√84	.

3.6 Replacement
The offspring replaces a solution in the population by the

following rule: the more similar parent to the offspring is
replaced if the offspring is better; otherwise, the other parent
is replaced if the offspring is better; if not again, the worst
chromosome in the population is replaced [2].

3.7 Stopping Condition
The GA stops after a fixed number (100,000) of genera-

tions, or after a given number (5,000) of consecutive failures
in replacing one of the parents.

4. EXPERIMENTAL RESULTS

4.1 Database
We used two well known datasets from the UCI Machine

Learning Database Repository1 to measure the performance
of the proposed approach. The statistics are outlined in Ta-
ble 1. The WDG contains 5,000 instances and each instance

1http://www.ics.uci.edu/∼mlearn/MLRepository.html
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interval4

Validity genes

chromosome

interval2 interval3 interval5

Pivot genes Overlap genes

Figure 6: Chromosome with 36 genes for various interval partitioning.

Table 1: Datasets

Database # of Instances # of Attributes # of Classes

WDG† 5,000 21 3

WDBC‡ 569 30 2

† Waveform Database Generator.
‡ Wisconsin Diagnostic Breast Cancer.

belongs to one of three classes of waves. Each class has ap-
proximately the same number of instances. Each instance
has 21 attributes with continuous values between 0 and 6
and all attributes include noise. The WDBC contains 569
instances with 357 benign and 212 malignant cases. Each in-
stance is described by an index, diagnosis, and 30 real-valued
attributes. As a preprocessing procedure for genetic fuzzy
discretization, we normalized each attribute value to lie in
the range [0, 1]. The domain of each attribute is discretized
into five intervals. For robust comparison, we applied the n-
fold cross-validation [7, 14]. That is, we randomly divide the
entire data set D into n mutually exclusive, equal-sized sub-
sets D1, D2, . . ., and, Dn. The ith experiment was trained
with D\Di and tested with Di for i = 1, . . . , n. For the
WDG we set n to 3 but to 2 for the WDBC because of the
small number of instances.

4.2 Experimental Results
We compared three discretization methods. All programs

were written in C++ language and run on AMD Athlon XP
1.8 GHz under the Linux operating system. In order to eval-
uate the generated data sets, we use artificial neural network
and C4.5. C4.5 [18] is a typical top-down method for induc-
ing decision trees. The simulation results are summarized
in Table 2 and Table 3. “ID” indicates the discretization
method that divides the entire domain into mutually exclu-
sive intervals evenly based on the pre-defined number, k, of
intervals. “FD” indicates a conventional fuzzy discretiza-
tion with a pre-specified overlap degree. “GAFD” indicates
the suggested genetic fuzzy discretization that evolves the
number,k, of intervals, the widths of intervals, and the de-
grees of overlaps. In the tables, we show the average accura-
cies and the standard deviations (σ) over 1000 runs. σ/

√
n

represents the group standard deviation of n runs of ANN.
For ID and FD, we tested with each k of 3 through 10

and took the best one in the Tables 2 and 3. Fig. 8 and
Fig. 9 show the details of the results which are not shown
in the tables. The results show that a simple increase in the
number of intervals did not always make good accuracies
(Fig. 8 and Fig. 9). From the simulation results, we can ob-
serve that the GAFD improved the classification accuracies
over ID and FD under both the frameworks of ANN and
C4.5. Considering the group standard deviation in the case
of ANN, we can say that GAFD was better than the others
with a confidence of more than 99%.
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Table 2: Result on the dataset: Wisconsin Diagnostic Breast Cancer
Method ANN (n=1000) C4.5

Accuracy Avg(%) σ/
√

n Intervals(k) Accuracy(%) Intervals(k)
ID 94.64764 0.03802 4 93.14554 6
FD 94.86219 0.03189 5 93.49951 7

GAFD 96.42861 0.03134 4 93.67433 4

Table 3: Result on the dataset: Waveform Database Generator
Method ANN (n=1000) C4.5

Accuracy Avg(%) σ/
√

n Intervals(k) Accuracy(%) Intervals(k)
ID 82.35543 0.03917 8 73.78524 5
FD 82.84607 0.03648 6 74.16517 6

GAFD 83.14135 0.03550 7 75.84483 7
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 3  4  5  6  7  8  9  10

ID−C4.5

ID−ANN
FD−ANN

FD−C4.5

Interval number

Accuracy (%)

Figure 8: Accuracies with various interval partitions
(WDBC).

5. CONCLUSIONS
In this paper, we tried to optimize with a genetic algo-

rithm the number of intervals, the size of intervals, and
the overlap degrees that specify the fuzzy membership func-
tion to find a more accurate discretization method. Our
approach is static, supervised method. In a learning process
we determine the parameters of discretization such as the
number of intervals, the sizes of intervals, and the overlap
degrees of fuzzy membership function and all the continuous
values of attributes are discretized. Considerable improve-
ment was observed by the suggested genetic fuzzy discretiza-
tion. In the result we observed that the number of intervals
did not have the key relevance to the performance of the clas-
sification methods and the positions of pivot points which
determine the boundaries of intervals were more relevant to
the accuracy of the methods [22].
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